Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu Qin Liu, ${ }^{\text {a }}$ Hisashi Konaka, ${ }^{\text {a }}$ Takayoshi Kuroda-Sowa, ${ }^{\text {a }}$ Masahiko Maekawa, ${ }^{\text {a }}$ Yusaku Suenaga, ${ }^{\text {a }}$ Gui Ling Ning ${ }^{\text {b }}$ and Megumu Munakata ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Science, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan, and
${ }^{\mathbf{b}}$ Department of Chemistry, Dalian University of Technology, Dalian 116012, People's Republic of China

Correspondence e-mail:
munakata@chem.kindai.ac.jp

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.067$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[diacetonitrilesilver(I)]-μ-2,11-dithia[3.3]paracyclophane- $\kappa^{2} S: S^{\prime}$] hydrogenoctafluoroadipate]

The title compound, $\left\{\left[\mathrm{Ag}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{HF}_{8} \mathrm{O}_{4}\right)\right\}_{n}$, forms two infinite chains, which are approximately perpendicular to each other. One chain consists of $\left[\mathrm{Ag}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]_{n}^{n+}$, and the other is formed from HOFA^{-}(HOFA^{-}is hydrogen octafluoroadipate) units via $\mathrm{O}_{\mathrm{c}}-\mathrm{H} \cdots \mathrm{O}_{\mathrm{c}}$ (c is carboxy) hydrogen-bonding interactions, with an $\mathrm{H} \cdots$ A distance of 1.66 (5) \AA. Each silver(I) cation lies on a crystallographic twofold rotation axis and has a tetrahedral geometry, defined by two N atoms belonging to two acetonitrile molecules and two S atoms from two 2,11dithia[3.3]paracyclophane molecules. The cyclophanes have inversion symmetry.

Comment

The chemistry of cyclophanes, especially [2.2]- and [3.3]paracyclophane, has attracted much attention in organometallic chemistry (Schmidbaur et al., 1986a,b; Schmidbaur et al., 1989; Swann et al., 1986; Cohen-Addad et al., 1988). Conversely, relatively little is known about the coordination chemistry of the structurally related thia-bridged paracyclophanes. In particular, reports on polymeric metal complexes of thiabridged compounds are rare. Recently, we have reported four copper(I) complexes and one silver(I) complex of 2,11-dithia[3.3]paracyclophane (dtpcp) (Munakata et al., 1996; Yamanoto et al., 1997). To further our work in this field, we report here the crystal structure of the title dtpcp complex with silver(I) octafluoroadipate generated in situ, $\left\{\left[\mathrm{Ag}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{HF}_{8} \mathrm{O}_{4}\right)\right\}_{n}$, (I) (Fig. 1).

(I)

The X-ray analysis shows that the crystal structure of (I) is centrosymmetric. Each silver(I) cation lies on a twofold rotation axis and has a four-coordinate environment, composed of two S atoms belonging to distinct dtpep molecules and two N atoms from different acetonitrile molecules. The geometry around the silver(I) cation is tetrahedral. The

Received 13 May 2004 Accepted 21 May 2004 Online 29 May 2004

Figure 1
Part of the structure of (I), with the atom-numbering scheme, showing displacement ellipsoids at the 50% probability level. Aromatic H atoms have been omitted for clarity. Atoms F1-F4 and F1 ${ }^{\mathrm{i}}-\mathrm{F} 4^{\mathrm{i}}$ have been omitted for clarity. [Symmetry codes: (i) $2-x, y, \frac{3}{2}-z$; (ii) $1-x, 1-y$, $1-z$.]
$\mathrm{Ag}-\mathrm{S}$ bond length in (I) [2.4787 (5) \AA] is slightly shorter than those in (μ_{2}-dtpcp)nitritosilver(I) [2.534 (2) and 2.510 (2) \AA; Munakata et al., 1996]. The $\mathrm{Ag}-\mathrm{N}$ bond length in (I) [2.355 (3) \AA] is much longer than those found in silver(I) complexes with pyridine derivatives (Jung et al., 2000; Muthu et al., 2002) but close to those in silver(I) polynitrile complexes (Min \& Suh, 2000).

The two symmetry-related acetonitrile ligands bonded to Ag have an $\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$ bond angle of $89.8(1)^{\circ}$ [symmetry code: (i) $2-x, y, \frac{3}{2}-z$], indicating their perpendicular nature. The dtpep ligand is centrosymmetric and bridges two symmetry-related silver centres, utilizing its two S atoms. An infinite one-dimensional chain of $\left[\mathrm{Ag}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]_{n}^{n+}$ is thus formed by the silver(I) cations, linking dtpcp ligands and terminal acetonitrile molecules. Interestingly, the HOFA ${ }^{-}$ anions do not take part in coordination with silver(I) cations but are connected to each other in a head-to-tail mode to give an infinite anion chain, in a perpendicular direction, via hydrogen-bond interactions, with an $\mathrm{O}_{\mathrm{c}} \cdots \mathrm{O}_{\mathrm{c}}$ (c is carboxy) distance of 2.447 (3) \AA (Table 2).

There are two kinds of sheets in (I), as shown in Fig. 2. One kind of sheet is formed by parallel $\left[\mathrm{Ag}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]_{n}^{n+}$ chains, with an interchain $\mathrm{Ag} 1^{\mathrm{i}} \cdots \mathrm{Ag} 1^{\mathrm{ii}}$ distance of $8.79 \AA$ [symmetry codes: (i) $x+1,1-y, z+\frac{1}{2}$; (ii) $x+1, y, z+1$], while the other kind is given by parallel HOFA ${ }^{-}$anion chains with an interchain $\mathrm{C} 9^{\mathrm{iii}} \ldots \mathrm{C} 10^{\text {iv }}$ distance of $7.65 \AA$ [symmetry codes: (iii) $\frac{3}{2}+x, \frac{3}{2}-y, z-\frac{1}{2}$; (iv) $\left.\frac{5}{2}-x, \frac{3}{2}-y, 1-z\right]$. No significant interaction was found between chains or sheets.

Experimental

A solution (3 ml) of mesitylene containing dtpcp ($0.03 \mathrm{mmol}, 8.1 \mathrm{mg}$) was introduced into a glass tube and layered with acetonitrile solution $(3 \mathrm{ml})$ containing $\mathrm{AgCF}_{3} \mathrm{CO}_{2}(0.04 \mathrm{mmol}, 8.8 \mathrm{mg})$ and octafluoroadipic acid $(0.1 \mathrm{mmol}, 29.0 \mathrm{mg})$. The glass tube was sealed under argon. After standing at room temperature for 5 d , colourless block crystals of (I) were isolated at the interface between the two solutions

Figure 2
A packing plot of (I), viewed along the b axis. Aromatic H atoms have been omitted for clarity. [Symmetry codes: (i) $1+x, 1-y, \frac{1}{2}+z$; (ii) $1+x$, $y, 1+z$; (iii) $\frac{3}{2}+x, \frac{3}{2}-y, z-\frac{1}{2}$; (iv) $\frac{5}{2}-x, \frac{3}{2}-y, 1-z$.]
(yield 44%). Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{AgF}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 41.56, H 3.08, N 3.73\%; found: C 41.52, H 3.01, N 3.64\%.

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$
$D_{x}=1.702 \mathrm{Mg} \mathrm{m}^{-3}$
$\left(\mathrm{C}_{6} \mathrm{HF}_{8} \mathrm{O}_{4}\right)$
Mo $K \alpha$ radiation
$M_{r}=751.45$
Monoclinic, $C 2 / c$
$a=8.748$ (1) \AA
$b=19.503$ (2) \AA
$c=17.247$ (2) \AA
$\beta=94.842(5)^{\circ}$
Cell parameters from 4112 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.91 \mathrm{~mm}^{-1}$
$T=150.2 \mathrm{~K}$
$V=2932.2$ (6) \AA^{3}
Block, colourless
$Z=4$
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Rigaku/MSC Mercury CCD
diffractometer
ω scans
Absorption correction: multi-scan
(Jacobson, 1995-1998)
$T_{\text {min }}=0.778, T_{\text {max }}=0.872$
11413 measured reflections
3352 independent reflections 2847 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 11$
$k=-25 \rightarrow 24$
$l=-22 \rightarrow 19$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0252 P)^{2}\right.$
$R(F)=0.035[I>2 \sigma(I)]$
$+2.7139 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.001$
$w R\left(F^{2}\right)=0.067$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}^{\text {A }}{ }^{-3}$
3352 reflections
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$
223 parameters
independent and constraie of refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Ag} 1-\mathrm{S} 1$	$2.4787(5)$	$\mathrm{Ag} 1-\mathrm{N} 1$	$2.355(3)$
$\mathrm{Ag} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.4787(5)$	$\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.355(3)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{S} 1^{\mathrm{i}}$	$143.43(3)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1$	$99.61(7)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{N} 1$	$106.12(8)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	$106.12(8)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	$99.61(7)$	$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	$89.8(1)$

Symmetry code: (i) $2-x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{v}}$	$0.79(5)$	$1.66(5)$	$2.447(3)$	$175(10)$

Symmetry code: (v) $\frac{3}{2}-x, \frac{3}{2}-y, 2-z$.

The acetonitrile H atoms were allowed for as riding atoms at distances of $0.96 \AA$, with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}$ (parent atom), while the coordinates of the other H atoms were found in a difference Fourier map and subsequently refined with a common fixed $U_{\text {iso }}(\mathrm{H})=$ $0.05 \AA^{2}$.

Data collection: CrystalClear; cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corportation, 1999); program(s) used to solve structure: SIR88 (Burla et al., 1989); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

The authors acknowledge financial support from a Grant-in-Aid for Scientific Research (Nos. 14340211 and 13874084)
from the Ministry of Education, Science, Sports and Culture in Japan.

References

Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-403.

Cohen-Addad, C., Consigny, M., D'Assenza, G. \& Baret, P. (1988). Acta Cryst. C44, 1924-1926.
Jacobson, R. (1995-1998). Private communication.
Jung, O.-S., Kim, Y. J., Lee, Y.-Y., Park, J. K. \& Chae, H. K. (2000). J. Am. Chem. Soc. 122, 9921-9925.
Min, K. S. \& Suh, M. P. (2000). J. Am. Chem. Soc. 122, 6834-6840.
Munakata, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. \& Nakagawa, S. (1996). J. Chem. Soc. Dalton Trans. pp. 1525-1530.
Muthu, S., Yip, J. H. K. \& Vittal, J. J. (2002). J. Chem. Soc. Dalton Trans. pp. 4561-4568.
Schmidbaur, H., Bublak, W., Huber, B., Holfmann, J. G. \& Müller, G. (1989). Helv. Chim. Acta, 122, 265-270.
Schmidbaur, H., Bublak, W., Huber, B., Reber, G. \& Müller, G. (1986a). Angew. Chem. Int. Ed. Engl. 25, 1089-1090.
Schmidbaur, H., Bublak, W., Huber, B., Reber, G. \& Müller, G. (1986b). Helv. Chim. Acta, 69, 1742-1747.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Swann, T., Hanson, A. W. \& Boekelheide, V. (1986). J. Am. Chem. Soc. 108, 3324-3334.
Molecular Structure Corporation (1999). TEXAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Yamanoto, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. \& Munakata, M. (1997). Inorg. Chim. Acta, 258, 87-91.

